
2/27/08 CS267 Guest Lecture 1 1

CS 267
Dense Linear Algebra:

Parallel Matrix Multiplication

James Demmel

www.cs.berkeley.edu/~demmel/cs267_Spr08

2/27/08 CS267 Guest Lecture 1 2

Outline

• Recall BLAS = Basic Linear Algebra Subroutines

• Matrix-vector multiplication in parallel

• Matrix-matrix multiplication in parallel

2/27/08 CS267 Guest Lecture 1 3

Review of the BLAS

BLAS level Ex. # mem refs # flops q

1 “Axpy”,

 Dot prod

3n 2n1 2/3

2 Matrix

-vector

 mult

n2 2n2 2

3 Matrix

-matrix

 mult

4n2 2n3 n/2

• Building blocks for all linear algebra

• Parallel versions call serial versions on each processor

• So they must be fast!

• Define q = # flops / # mem refs = “computational intensity”

• The larger is q, the faster the algorithm can go in the

 presence of memory hierarchy

• “axpy”: y = *x + y, where scalar, x and y vectors

2/27/08 CS267 Guest Lecture 1 4

Different Parallel Data Layouts for Matrices

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

3) 1D Column Block Cyclic Layout

4) Row versions of the previous layouts

Generalizes others

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3 6) 2D Row and Column

 Block Cyclic Layout

0 1 2 3

0 1

2 3

5) 2D Row and Column Blocked Layout

b

2/27/08 CS267 Guest Lecture 1 5

Parallel Matrix-Vector Product

• Compute y = y + A*x, where A is a dense matrix

• Layout:

• 1D row blocked

• A(i) refers to the n by n/p block row

 that processor i owns,

• x(i) and y(i) similarly refer to

 segments of x,y owned by i

• Algorithm:

• Foreach processor i

• Broadcast x(i)

• Compute y(i) = A(i)*x

• Algorithm uses the formula

y(i) = y(i) + A(i)*x = y(i) + j A(i,j)*x(j)

x

y

P0

P1

P2

P3

P0 P1 P2 P3

A(0)

A(1)

A(2)

A(3)

2/27/08 CS267 Guest Lecture 1 6

Matrix-Vector Product y = y + A*x

• A column layout of the matrix eliminates the broadcast of x

• But adds a reduction to update the destination y

• A 2D blocked layout uses a broadcast and reduction, both

 on a subset of processors

• sqrt(p) for square processor grid

P0 P1 P2 P3

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

2/27/08 CS267 Guest Lecture 1 7

Parallel Matrix Multiply

• Computing C=C+A*B

• Using basic algorithm: 2*n3 Flops

• Variables are:

• Data layout

• Topology of machine

• Scheduling communication

• Use of performance models for algorithm design

• Message Time = “latency” + #words * time-per-word

 = + n*

• Efficiency (in any model):

• serial time / (p * parallel time)

• perfect (linear) speedup efficiency = 1

2/27/08 CS267 Guest Lecture 1 8

Matrix Multiply with 1D Column Layout

• Assume matrices are n x n and n is divisible by p

• A(i) refers to the n by n/p block column that processor i

 owns (similiarly for B(i) and C(i))

• B(i,j) is the n/p by n/p sublock of B(i)

• in rows j*n/p through (j+1)*n/p

• Algorithm uses the formula

C(i) = C(i) + A*B(i) = C(i) + j A(j)*B(j,i)

p0 p1 p2 p3 p5 p4 p6 p7

May be a reasonable

 assumption for analysis,

 not for code

2/27/08 CS267 Guest Lecture 1 9

Matrix Multiply: 1D Layout on Bus or Ring

• Algorithm uses the formula

C(i) = C(i) + A*B(i) = C(i) + j A(j)*B(j,i)

• First consider a bus-connected machine without

 broadcast: only one pair of processors can

 communicate at a time (ethernet)

• Second consider a machine with processors on a ring:

 all processors may communicate with nearest neighbors

 simultaneously

2/27/08 CS267 Guest Lecture 1 10

MatMul: 1D layout on Bus without Broadcast

Naïve algorithm:

 C(myproc) = C(myproc) + A(myproc)*B(myproc,myproc)

 for i = 0 to p-1

 for j = 0 to p-1 except i

 if (myproc == i) send A(i) to processor j

 if (myproc == j)

 receive A(i) from processor i

 C(myproc) = C(myproc) + A(i)*B(i,myproc)

 barrier

Cost of inner loop:

 computation: 2*n*(n/p)2 = 2*n3/p2

 communication: + *n2 /p

2/27/08 CS267 Guest Lecture 1 11

Naïve MatMul (continued)

Cost of inner loop:

 computation: 2*n*(n/p)2 = 2*n3/p2

 communication: + *n2 /p … approximately

Only 1 pair of processors (i and j) are active on any iteration,

 and of those, only i is doing computation

 => the algorithm is almost entirely serial

Running time:

 = (p*(p-1) + 1)*computation + p*(p-1)*communication

 ~= 2*n3 + p2* + p*n2*

 This is worse than the serial time and grows with p.

Why might you still want to do this?

2/27/08 CS267 Guest Lecture 1 12

Matmul for 1D layout on a Processor Ring

• Pairs of processors can communicate simultaneously

Copy A(myproc) into Tmp

C(myproc) = C(myproc) + Tmp*B(myproc , myproc)

for j = 1 to p-1

 Send Tmp to processor myproc+1 mod p

 Receive Tmp from processor myproc-1 mod p

 C(myproc) = C(myproc) + Tmp*B(myproc-j mod p , myproc)

• Same idea as for gravity in simple sharks and fish algorithm

• May want double buffering in practice for overlap

• Ignoring deadlock details in code
• Time of inner loop = 2*(+ *n2/p) + 2*n*(n/p)2

2/27/08 CS267 Guest Lecture 1 13

Matmul for 1D layout on a Processor Ring

• Time of inner loop = 2*(+ *n2/p) + 2*n*(n/p)2

• Total Time = 2*n* (n/p)2 + (p-1) * Time of inner loop

• ~ 2*n3/p + 2*p* + 2* *n2

• (Nearly) Optimal for 1D layout on Ring or Bus, even with

 Broadcast:

• Perfect speedup for arithmetic

• A(myproc) must move to each other processor, costs at

 least

 (p-1)*cost of sending n*(n/p) words

• Parallel Efficiency = 2*n3 / (p * Total Time)

 = 1/(1 + * p2/(2*n3) + * p/(2*n))

 = 1/ (1 + O(p/n))

• Grows to 1 as n/p increases (or and shrink)

2/27/08 CS267 Guest Lecture 1 14

MatMul with 2D Layout

• Consider processors in 2D grid (physical or logical)

• Processors can communicate with 4 nearest neighbors

• Broadcast along rows and columns

• Assume p processors form square s x s grid, s = p1/2

 p(0,0) p(0,1) p(0,2)

 p(1,0) p(1,1) p(1,2)

 p(2,0) p(2,1) p(2,2)

 p(0,0) p(0,1) p(0,2)

 p(1,0) p(1,1) p(1,2)

 p(2,0) p(2,1) p(2,2)

 p(0,0) p(0,1) p(0,2)

 p(1,0) p(1,1) p(1,2)

 p(2,0) p(2,1) p(2,2)

= *

2/27/08 CS267 Guest Lecture 1 15

Cannon’s Algorithm

… C(i,j) = C(i,j) + A(i,k)*B(k,j)

… assume s = sqrt(p) is an integer

 forall i=0 to s-1 … “skew” A

 left-circular-shift row i of A by i

 … so that A(i,j) overwritten by A(i,(j+i)mod s)

 forall i=0 to s-1 … “skew” B

 up-circular-shift column i of B by i

 … so that B(i,j) overwritten by B((i+j)mod s), j)

 for k=0 to s-1 … sequential

 forall i=0 to s-1 and j=0 to s-1 … all processors in parallel

 C(i,j) = C(i,j) + A(i,j)*B(i,j)

 left-circular-shift each row of A by 1

 up-circular-shift each column of B by 1

k

2/27/08 CS267 Guest Lecture 1 16

C(1,2) = A(1,0) * B(0,2) + A(1,1) * B(1,2) + A(1,2) * B(2,2)

Cannon’s Matrix Multiplication

2/27/08 CS267 Guest Lecture 1 17

Initial Step to Skew Matrices in Cannon

• Initial blocked input

• After skewing before initial block multiplies

A(1,0)

A(2,0)

A(0,1) A(0,2)

A(1,1)

A(2,1)

A(1,2)

A(2,2)

A(0,0)

B(0,1) B(0,2)

B(1,0)

B(2,0)

B(1,1) B(1,2)

B(2,1) B(2,2)

B(0,0)

A(1,0)

A(2,0)

A(0,1) A(0,2)

A(1,1)

A(2,1)

A(1,2)

A(2,2)

A(0,0)

B(0,1)

B(0,2) B(1,0)

B(2,0)

B(1,1)

B(1,2)

B(2,1)

B(2,2) B(0,0)

2/27/08 CS267 Guest Lecture 1 18

Skewing Steps in Cannon
All blocks of A must multiply all like-colored blocks of B

• First step

• Second

• Third

A(1,0)

A(2,0)

A(0,1) A(0,2)

A(1,1)

A(2,1)

A(1,2)

A(2,2)

A(0,0)

B(0,1)

B(0,2) B(1,0)

B(2,0)

B(1,1)

B(1,2)

B(2,1)

B(2,2) B(0,0)

A(1,0)

A(2,0)

A(0,1) A(0,2)

A(2,1)

A(1,2) B(0,1)

B(0,2) B(1,0)

B(2,0)

B(1,1)

B(1,2)

B(2,1)

B(2,2) B(0,0)

A(1,0)

A(2,0)

A(0,1) A(0,2)

A(1,1)

A(2,1)

A(1,2)

A(2,2)

A(0,0) B(0,1)

B(0,2) B(1,0)

B(2,0)

B(1,1)

B(1,2)

B(2,1)

B(2,2) B(0,0)

A(1,1)

A(2,2)

A(0,0)

2/27/08 CS267 Guest Lecture 1 19

Cost of Cannon’s Algorithm
 forall i=0 to s-1 … recall s = sqrt(p)

 left-circular-shift row i of A by i … cost s*(+ *n2/p)

 forall i=0 to s-1

 up-circular-shift column i of B by i … cost s*(+ *n2/p)

 for k=0 to s-1

 forall i=0 to s-1 and j=0 to s-1

 C(i,j) = C(i,j) + A(i,j)*B(i,j) … cost = 2*(n/s)3 = 2*n3/p3/2

 left-circular-shift each row of A by 1 … cost = + *n2/p

 up-circular-shift each column of B by 1 … cost = + *n2/p

° Total Time = 2*n3/p + 4* s* + 4* *n2/s

° Parallel Efficiency = 2*n3 / (p * Total Time)

 = 1/(1 + * 2*(s/n)3 + * 2*(s/n))

 = 1/(1 + O(sqrt(p)/n))

° Grows to 1 as n/s = n/sqrt(p) = sqrt(data per processor) grows

° Better than 1D layout, which had Efficiency = 1/(1 + O(p/n))

2/27/08 CS267 Guest Lecture 1 20

Pros and Cons of Cannon

• Local computation one call to (optimized) matrix-multiply

• Hard to generalize for

• p not a perfect square

• A and B not square

• Dimensions of A, B not perfectly divisible by

 s=sqrt(p)

• A and B not “aligned” in the way they are stored on

 processors

• block-cyclic layouts

• Memory hog (extra copies of local matrices)

2/27/08 CS267 Guest Lecture 1 21

SUMMA Algorithm

• SUMMA = Scalable Universal Matrix Multiply

• Slightly less efficient, but simpler and easier to

 generalize

• Presentation from van de Geijn and Watts

• www.netlib.org/lapack/lawns/lawn96.ps

• Similar ideas appeared many times

• Used in practice in PBLAS = Parallel BLAS

• www.netlib.org/lapack/lawns/lawn100.ps

2/27/08 CS267 Guest Lecture 1 22

SUMMA

* =
i

j

A(i,k)

k

k

B(k,j)

• i, j represent all rows, columns owned by a processor
• k is a block of b 1 rows or columns

• C(i,j) = C(i,j) + k A(i,k)*B(k,j)

• Assume a pr by pc processor grid (pr = pc = 4 above)
• Need not be square

C(i,j)

2/27/08 CS267 Guest Lecture 1 23

SUMMA

For k=0 to n-1 … or n/b-1 where b is the block size

 … = # cols in A(i,k) and # rows in B(k,j)

 for all i = 1 to pr … in parallel

 owner of A(i,k) broadcasts it to whole processor row

 for all j = 1 to pc … in parallel

 owner of B(k,j) broadcasts it to whole processor column

 Receive A(i,k) into Acol

 Receive B(k,j) into Brow

 C_myproc = C_myproc + Acol * Brow

* =
i

j

A(i,k)

k

k

B(k,j)

C(i,j)

2/27/08 CS267 Guest Lecture 1 24

SUMMA performance

For k=0 to n/b-1

 for all i = 1 to s … s = sqrt(p)

 owner of A(i,k) broadcasts it to whole processor row

 … time = log s *(+ * b*n/s), using a tree

 for all j = 1 to s

 owner of B(k,j) broadcasts it to whole processor column

 … time = log s *(+ * b*n/s), using a tree

 Receive A(i,k) into Acol

 Receive B(k,j) into Brow

 C_myproc = C_myproc + Acol * Brow

 … time = 2*(n/s)2*b

° Total time = 2*n3/p + * log p * n/b + * log p * n2 /s

° To simplify analysis only, assume s = sqrt(p)

2/27/08 CS267 Guest Lecture 1 25

SUMMA performance

• Total time = 2*n3/p + * log p * n/b + * log p * n2 /s

• Parallel Efficiency =

 1/(1 + * log p * p / (2*b*n2) + * log p * s/(2*n))

• ~Same term as Cannon, except for log p factor

 log p grows slowly so this is ok

• Latency () term can be larger, depending on b

 When b=1, get * log p * n

 As b grows to n/s, term shrinks to

 * log p * s (log p times Cannon)

• Temporary storage grows like 2*b*n/s

• Can change b to tradeoff latency cost with memory

2/27/08 CS267 Guest Lecture 1 26

ScaLAPACK Parallel Library

2/27/08 CS267 Lecture 8 27

PDGEMM = PBLAS routine

 for matrix multiply

Observations:

 For fixed N, as P increases

 Mflops increases, but

 less than 100% efficiency

 For fixed P, as N increases,
 Mflops (efficiency) rises

DGEMM = BLAS routine

 for matrix multiply

Maximum speed for PDGEMM

 = # Procs * speed of DGEMM

Observations (same as above):

 Efficiency always at least 48%
 For fixed N, as P increases,

 efficiency drops

 For fixed P, as N increases,

 efficiency increases

2/27/08 CS267 Guest Lecture 1 28

Recursive Layouts

• For both cache hierarchies and parallelism, recursive

 layouts may be useful

• Z-Morton, U-Morton, and X-Morton Layout

• Also Hilbert layout and others

• What about the user’s view?

• Fortunately, many problems can be solved on a

 permutation

• Never need to actually change the user’s layout

2/27/08 CS267 Guest Lecture 1 29

Summary of Parallel Matrix Multiplication

• 1D Layout

• Bus without broadcast - slower than serial

• Nearest neighbor communication on a ring (or bus with

 broadcast): Efficiency = 1/(1 + O(p/n))

• 2D Layout

• Cannon

• Efficiency = 1/(1+O((sqrt(p) /n)3 + * sqrt(p) /n))

• Hard to generalize for general p, n, block cyclic, alignment

• SUMMA

• Efficiency = 1/(1 + O(log p * p / (b*n2) + log p * sqrt(p) /n))

• Very General

• b small => less memory, lower efficiency

• b large => more memory, high efficiency

• Recursive layouts
• Current area of research

2/27/08 CS267 Guest Lecture 1 30

Extra Slides

02/09/2006 CS267 Lecture 8 31

Gaussian Elimination

0
x

x

x
x

Standard Way
subtract a multiple of a row

0

x

0
0

. . .

0

LINPACK
apply sequence to a column

x

nb

 then apply nb to rest of matrix

a3=a3-a1*a2

a3

a2

a1

L

a2 =L-1 a2

0

x

0
0

. . .

0

nb LAPACK
apply sequence to nb

Slide source: Dongarra

02/09/2006 CS267 Lecture 8 32

LU Algorithm:
 1: Split matrix into two rectangles (m x n/2)
 if only 1 column, scale by reciprocal of pivot & return

 2: Apply LU Algorithm to the left part

 3: Apply transformations to right part
 (triangular solve A12 = L-1A12 and
 matrix multiplication A22=A22 -A21*A12)

 4: Apply LU Algorithm to right part

Gaussian Elimination via a Recursive Algorithm

L A12

A21 A22

F. Gustavson and S. Toledo

Most of the work in the matrix multiply
Matrices of size n/2, n/4, n/8, …

Slide source: Dongarra

02/09/2006 CS267 Lecture 8 33

Recursive Factorizations

• Just as accurate as conventional method

• Same number of operations

• Automatic variable blocking

• Level 1 and 3 BLAS only !

• Extreme clarity and simplicity of expression

• Highly efficient

• The recursive formulation is just a rearrangement of the point-wise
 LINPACK algorithm

• The standard error analysis applies (assuming the matrix

 operations are computed the “conventional” way).

Slide source: Dongarra

02/09/2006 CS267 Lecture 8 34

LAPACK

Recursive LU

Recursive LU

LAPACK

Dual-processor

Uniprocessor

Slide source: Dongarra

02/09/2006 CS267 Lecture 8 35

Review: BLAS 3 (Blocked) GEPP

for ib = 1 to n-1 step b … Process matrix b columns at a time

 end = ib + b-1 … Point to end of block of b columns

 apply BLAS2 version of GEPP to get A(ib:n , ib:end) = P’ * L’ * U’

 … let LL denote the strict lower triangular part of A(ib:end , ib:end) + I

 A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n) … update next b rows of U

 A(end+1:n , end+1:n) = A(end+1:n , end+1:n)

 - A(end+1:n , ib:end) * A(ib:end , end+1:n)

 … apply delayed updates with single matrix-multiply

 … with inner dimension b

BLAS 3

02/09/2006 CS267 Lecture 8 36

Review: Row and Column Block Cyclic Layout

processors and matrix blocks

are distributed in a 2d array

pcol-fold parallelism

in any column, and calls to the

BLAS2 and BLAS3 on matrices of

size brow-by-bcol

serial bottleneck is eased

need not be symmetric in rows and

columns

02/09/2006 CS267 Lecture 8 37

Distributed GE with a 2D Block Cyclic Layout

block size b in the algorithm and the block sizes brow

and bcol in the layout satisfy b=brow=bcol.

shaded regions indicate busy processors or

communication performed.

unnecessary to have a barrier between each

step of the algorithm, e.g.. step 9, 10, and 11 can be
pipelined

02/09/2006 CS267 Lecture 8 38

Distributed GE with a 2D Block Cyclic Layout

02/09/2006 CS267 Lecture 8 39

M
a
tr

ix
 m

u
lt

ip
ly

 o
f

 g
re

e
n

 =
 g

re
e
n

 -
 b

lu
e
 *

 p
in

k

02/09/2006 CS267 Lecture 8 40

PDGESV = ScaLAPACK
 parallel LU routine

Since it can run no faster than its

 inner loop (PDGEMM), we measure:
Efficiency =
 Speed(PDGESV)/Speed(PDGEMM)

Observations:

 Efficiency well above 50% for large
 enough problems
 For fixed N, as P increases,

 efficiency decreases
 (just as for PDGEMM)

 For fixed P, as N increases
 efficiency increases
 (just as for PDGEMM)

 From bottom table, cost of solving
 Ax=b about half of matrix multiply

 for large enough matrices.
 From the flop counts we would
 expect it to be (2*n3)/(2/3*n3) = 3

 times faster, but communication
 makes it a little slower.

02/09/2006 CS267 Lecture 8 41

02/09/2006 CS267 Lecture 8 42

Scales well,

 nearly full machine speed

02/09/2006 CS267 Lecture 8 43

Old version,

pre 1998 Gordon Bell Prize

Still have ideas to accelerate
Project Available!

Old Algorithm,

 plan to abandon

02/09/2006 CS267 Lecture 8 44

Have good ideas to speedup

Project available!

Hardest of all to parallelize

Have alternative, and

 would like to compare

Project available!

02/09/2006 CS267 Lecture 8 45

Out-of-core means

 matrix lives on disk;
 too big for main mem

Much harder to hide

 latency of disk

QR much easier than LU

 because no pivoting
 needed for QR

Moral: use QR to solve Ax=b

Projects available
 (perhaps very hard…)

02/09/2006 CS267 Lecture 8 46

A small software project ...

02/09/2006 CS267 Lecture 8 47

Work-Depth Model of Parallelism

• The work depth model:

• The simplest model is used

• For algorithm design, independent of a machine

• The work, W, is the total number of operations

• The depth, D, is the longest chain of dependencies

• The parallelism, P, is defined as W/D

• Specific examples include:

• circuit model, each input defines a graph with ops at

 nodes

• vector model, each step is an operation on a vector of

 elements

• language model, where set of operations defined by

 language

02/09/2006 CS267 Lecture 8 48

Latency Bandwidth Model

• Network of fixed number P of processors

• fully connected

• each with local memory

• Latency ()

• accounts for varying performance with number of

 messages

• gap (g) in logP model may be more accurate cost if

 messages are pipelined

• Inverse bandwidth ()

• accounts for performance varying with volume of data

• Efficiency (in any model):

• serial time / (p * parallel time)

• perfect (linear) speedup efficiency = 1

02/09/2006 CS267 Lecture 8 49

Initial Step to Skew Matrices in Cannon

• Initial blocked input

• After skewing before initial block multiplies

A(0,1) A(0,2)

A(1,0)

A(2,0)

A(1,1) A(1,2)

A(2,1) A(2,2)

A(0,0)

B(0,1) B(0,2)

B(1,0)

B(2,0)

B(1,1) B(1,2)

B(2,1) B(2,2)

B(0,0) A(0,1) A(0,2)

A(1,0)

A(2,0)

A(1,1) A(1,2)

A(2,1) A(2,2)

A(0,0)

B(0,1)

B(0,2) B(1,0)

B(2,0)

B(1,1)

B(1,2)

B(2,1)

B(2,2) B(0,0)

02/09/2006 CS267 Lecture 8 50

Skewing Steps in Cannon

• First step

• Second

• Third

A(0,1) A(0,2)

A(1,0)

A(2,0)

A(1,1) A(1,2)

A(2,1) A(2,2)

A(0,0)

B(0,1)

B(0,2) B(1,0)

B(2,0)

B(1,1)

B(1,2)

B(2,1)

B(2,2) B(0,0)

A(0,1) A(0,2)

A(1,0)

A(2,0)

A(1,2)

A(2,1)

B(0,1)

B(0,2) B(1,0)

B(2,0)

B(1,1)

B(1,2)

B(2,1)

B(2,2) B(0,0)

A(0,1) A(0,2)

A(1,0)

A(2,0)

A(1,1) A(1,2)

A(2,1) A(2,2)

A(0,0) B(0,1)

B(0,2) B(1,0)

B(2,0)

B(1,1)

B(1,2)

B(2,1)

B(2,2) B(0,0)

A(1,1)

A(2,2)

A(0,0)

